思いつかないこともある。だからおもしろい ー数学からぼくが学んだこと4-

数学はこれまで、何百年も、何千年もかけて発展してきました。
そして、ぼくたちが学ぶ数学は、数学にたずさわる多くのかたがたが、年月をかけて整えてきたものです。
「あーでもないこーでもない」と苦心したうえに出来上がった道なはずです。
数学が何百年も、何千年もかけて発展してきた道を、ぼくたちは10数年で進んでいきます。
考えると、これって、ものすごいスピードです。
過去の数学的知見を最短コースで学ぶことができる道が、ぼくたちには与えられている。
一見その道を歩いていくと、確かにスピーディーにいろんな数学の内容を学ぶことができるかに見えます。


「そんなん思いつかへんわ」
数学を学んでいて、こう思ったことが一度や二度はあるはず。
数学の理路整然な様を見たとき。
証明を理解しようとあがいているとき。
問題が解けず、解答・解説を読んできるとき。
思いつかないと感じるのは、整えられた道を進むがゆえだと思うんです。
何百年、何千年の発展の歴史を、10数年で学ぼうとするがゆえだと思うんです。
ある概念が定義され、その次にはその定義から導かれる定理の証明に入っていく。
さらにその定理からまた新たな定理が導かれていく。
そうして、スススーっと進んでいってしまう。
新しい定義がどんどん出てきて、定理がポンポンと生まれ、問題に鮮やかな解答が与えられていくってのを見せられ続けると、「そんなん思いつかへんわ」だらけになってしまいます。
数学が「思いつき」や「ひらめき」だけを頼りに発展したもののように感じてしまいます。
でも、ちょっと考えてみてください。
数学は、できあがっているその最中から、発展を遂げているまさにそのときから、ぼくたちが学ぶ数学のように整っていたのでしょうか。
そうではないはず。
「あーでもないこーでもない」という苦心を経て、整理されてきたはず。


定義というのは、ただやみくもにされていくものではありません。それを定義する理由が、必然性があります。
定理というのは、ぽっと出現するものではありません。ある事柄を定め、それについて考えに考えて考え抜いた末に出てきたものです。
「思いつき」や「ひらめき」には、必ずその背景が、思いつく理由が、ひらめくストーリーが隠されています。
その思いつく理由は、とても単純な疑問であったりします。
ひらめいたストーリーは、シンプルな問いから生まれていたりします。
ごくごく自然に抱く小さな疑問。そこから数学の世界は広がっていってるんです。
その背景を知らずに、ストーリーに触れずに数学を学んでいくのは、なんともったいないことか。


整えられている道を歩んでいると、その道が昔は全然整えられておらず、でこぼこであった事実を想像する事は確かに簡単ではありません。
つい、ずっとそうであったように、はじめから整った状態であったように思ってしまいます。
整えられすぎているがゆえに、「思い付き」や「ひらめき」の連続であるかのように錯覚してしまいます。
なので、「そんなん思いつかへんわ」と感じることは、ある意味仕方のないこと。
思いつかないこともあるに決まってます。だって、すごい年月をかけて発展してきた数学を、ものすごいスピードで学んでいくわけですから。
でもね、「そんなん思いつかへんわ」と感じ、思いつかないから覚えちゃえってなっちゃうのは、ぼくは嫌なんです。
そんな数学、楽しくない。
「思いつかへんわ」ってなって、もう数学イヤってなってしまうのが悲しい。
数学はすごくおもしろいのに。
だからどうか、「思いつかへんわ」と思っても、そこで見切りをつけないでほしいんです。
思いつかないと感じても、一度立ち止まり、「思いついた理由がどこかにあるはず」ととらえてみてほしいんです。
「あーでもないこーでもない」と考えてみてほしいんです。
「確かに思いつかないかもしれない。けど、思いついた理由がどこかにあるはず」と考え、数学に触れていったほうが、驚きや発見と出会う機会は格段に増えます。
いっそこう考えるのもいいかもしれません。
「ひらめきなんてないはず」と。
そして、ストーリーを明らかにするために、いったん立ち止まり、考えてみる。
それができるか否かで、数学の楽しさは大きく違ってくるように思います。


「”ひらめき”はいらない」」という視点で眺めることができるようになると、それまで思考停止の要因であった「そんなん思いつかへんわ」が、思考を進めるトリガーとなってくれます。
「そんなん思いつかへんわ」。でも、「ひらめきなんてない」はず。じゃあ、「そう思いつく理由を、ひらめいたわけを明らかにしてやろう」と。
思いつく理由さがしや、ひらめきいたわけを明らかにしていく術として、「条件と求めるものを確認」することや「ツッコミを入れる」ことなんかが役立ってくれるのではないか、と思います。

連載のおわりに

数学のおもしろさを、もっとたくさんの人に感じてほしい。楽しみ方を知ってほしい。
そういう思いから、「数学からぼくが学んだこと」を書きました。
ぼくは、数学をおもしろいと、楽しいと感じています。じゃあ、なぜそう感じるようになったのか。どういったことを学んできてそんな思いに至ったのか。それが少しでも伝わればいいな、と考えての連載でした。
ちょっとでもいいから、数学を楽しむ一助になれば、うれしい限りです。

では、お読みいただきありがとうございました。

ツッコミを入れて、ストーリーを読み解く ー数学からぼくが学んだこと3ー

「”ひらめき”は必要でない」という目で数学を眺める。ストーリーを読み解く気持ちで解説を追う。
そうしていくと、問題の解説や定理の証明を読んでいるとき、ことあるごとに「ここはなぜこう考えるのか?」「式を変形すると確かに成り立つ。けど、なぜこう式を変形しようと思うのか?」などの疑問を抱くようになります。
”ひらめき”は必要ではないと思うということは、すべてに対し、「そう考えていく理由があるはず、手がかりがあるはず」と考え、「そう考えていく理由はなにか?」を問い、その答えを探していくことになります。
ぼくはこれを、「ツッコミを入れる」と言っています。ことあるごとに「(そう考えていく理由は)なんでやろう?」と問うていくわけですから。


\(\sin \theta + \cos \theta = \displaystyle\frac{1}{3}\)のとき、\(\tan \theta + \displaystyle \frac{1}{\tan \theta}\)の値を求めよ。

問題を読み、考える。条件と求めるものを確認し、さらに考える。
でも、わからない、解き進めれないことだってあります。はじめからなんだって解けちゃう、なんてことはありません。
そこで解説を読んでいってみます。一行目には、こんな式変形が書かれていました。

\(\tan \theta + \displaystyle \frac{1}{\tan \theta} = \displaystyle \frac{\sin \theta}{\cos \theta} + \displaystyle \frac{\cos \theta}{\sin \theta}\)

解答を読み、こう考えるかもしれません。「なんでこう式変形するんやろう?」「なぜこう式変形しようと思うんやろう?」と。


「なんで?」というちょっとした疑問を大切にしてほしいな、と思います。
ツッコミを入れ、考えてみてほしいな、と思います。


この式変形では、\(\tan \theta = \displaystyle \frac{\sin \theta}{\cos \theta}\)という、\(\tan \theta\)と\(\sin \theta , \cos \theta\)との関係を表す式を用いて、\(\tan \theta + \displaystyle \frac{1}{\tan \theta} = \displaystyle \frac{\sin \theta}{\cos \theta} + \displaystyle \frac{\cos \theta}{\sin \theta}\)と式変形しています。
もしかしたら、「なぜこう式変形しようと思うんやろう?」と考えながら式を眺ると、すぐにその理由がわかる人が多いかもしれません。
ここでは丁寧に、式変形の理由を考えていきます。条件と求めるものを確認しましょう。

  • 条件:\(\sin \theta + \cos \theta = \displaystyle\frac{1}{3}\)

  • 求めるもの:\(\tan \theta + \displaystyle \frac{1}{\tan \theta}\)の値

となります。
求めるものは\(\tan \theta\)で表されているのに対し、条件としては\(\sin \theta , \cos \theta\)の関係式が与えられている。
つまり、このままでは、求めるものに対して、条件を利用することができそうにありません。
となると、条件の\(\sin \theta , \cos \theta\)を式変形して\(\tan \theta\)を登場させるか、あるいは求めるものにある\(\tan \theta\)を変形して\(\sin \theta , \cos \theta\)を登場させるかしたい。
もしそうできれば、条件を利用することができそうだから。
\(\sin \theta , \cos \theta\)を変形して\(\tan \theta\)を登場させるか、もしくは\(\tan \theta\)を変形して\(\sin \theta , \cos \theta\)を登場させるか。
いずれの場合であっても、\(\tan \theta\)と\(\sin \theta , \cos \theta\)との関係を表す式が必要なことに変わりない。
ということで、頭の中にある\(\tan \theta = \displaystyle \frac{\sin \theta}{\cos \theta}\)という関係式を登場させて、式変形していこうと思うわけです。
求めるものを式変形していくほうが、\(\tan \theta = \displaystyle \frac{\sin \theta}{\cos \theta}\)をそのまま代入できるので、話が単純に進んでいきそう。ということで、\(\tan \theta + \displaystyle \frac{1}{\tan \theta}\)に\(\tan \theta = \displaystyle \frac{\sin \theta}{\cos \theta}\)を代入し、

\(\tan \theta + \displaystyle \frac{1}{\tan \theta} = \displaystyle \frac{\sin \theta}{\cos \theta} + \displaystyle \frac{\cos \theta}{\sin \theta}\)

というふうに進んでいっている、ということになります。
条件は\(\sin \theta\)と\(\cos \theta\)、求めるものは\(\tan \theta\)。だから\(\tan \theta = \displaystyle \frac{\sin \theta}{\cos \theta}\)を使ってみようかな、というとても単純な動機を出発点にしているわけですね。


「そう考えていく理由はなにか?」を問う。ささやかな疑問を大切にし、「なんでやねん」と積極的にツッコミを入れていく。考えていく理由に注目し、解説の流れを、そこにあるストーリーを読み解く。
「そう考える理由があるはず」 という目で定義や定理、定理の証明、問題の解説をながめ、ツッコミを入れ、理由が明らかになったとき、一つにつながる感覚を覚えます。道筋が見えるようになってきます。これこれこういう理由で、この考えが出てくる、と。
道筋が明らかになること。一つにつながること。これらは、理解を深いレベルに掘り下げてくれます。
深く理解したことは、忘れにくく、また、自分でその理解を使えるようにもなります。自分の足で、道筋を追えるようになる、ということです。
小さな疑問を大切にし、「そう考えていく理由はなにか?」を問えば問うほどに、ツッコミを入れれば入れるほどに、自分の足で進む力はついていきます。
「あ、前もこんな風に考え、進んでたな」「以前もこの理由で考えてったことあったな」という、既視感を得ることも多くなってきます。
「つながり」の部分がしっかり結びついているので、考えの流れを自分で追うことができるようになる。
それは、「自分で考えていく力」が育っていっていることに他ならないと思うのです。
また、一つにつながった瞬間「なるほど!」と自分の中にピシッと走るものがあります。この感覚は、強烈です。強烈な、快感です。この快感は、学ぶことでしか味わうことはできない。
つながる感覚、つながる快感を得たいから、学ぼうと思えるのかもしれません。


ツッコミを入れ、考え、理解する。
このプロセスを経るか経ないかで、数学に対する向き合い方が大きく変わってしまうように感じます。
関西人になったつもりで、ことあるごとに「なんでやねん!」とツッコミを入れて欲しいな、と思います。
では、お読みいただきありがとうございました。

「”ひらめき”はいらない」という目で見る ー数学からぼくが学んだこと2ー

“とりあえず”・”なんとなく”進むのではなく、まずは、「条件と求めるものを確認」し、今自分のいる場所と、向かうべき目的地を確認する。
こんな当たり前のことが、実はとても大切です。
「条件と求めるもの」は、最初に確認しさえすればいい、というものでもありません。
間違った道を進んでいることに気付いた時にも、再度「条件と求めるものを確認」するという行為は、別の一歩を探る手がかりとなってくれます。
また、「条件と求めるものを確認」することは、「ひらめき」に頼らず、一歩一歩着実に進んでいくための基本にもなってきます。


\(x\)軸に接し、\(2\)点\((2, 3), (-1, 12)\)を通る2次関数の方程式を求めよ。

この問題の解答を眺めてみます。はじめの一行だけ。こんな風に書かれていることが多いはず。

解)求める2次関数の方程式は、\(y=a(x-p)^2\)とおける。

問題を自分で解くことができずに解答をひらいた人は、この一行を見ると、もしかすると「なんでいきなりそうおけるってわかるねん!」とツッコミを入れたくなるかもしれません。
実際ぼくはそうでした。「なんでいきなりそうおけるってわかるねん、なんでそうおこうと思うねん」とモヤモヤしながらも、問題の解答を覚え、とりあえずその問題については解けるようにする、というスタンスで数学を勉強していました。
ずっとモヤモヤを抱いたままなのですっきりせず、楽しく学ぶことなんてできませんでした。
そんなぼくは恩師に出会い、「条件と求めるものを確認」することの大切さを学びました。それに加え、「”ひらめき”は必要ではない」ということも。


「条件と求めるものを確認」してみましょう。

  • 条件:\(x\)軸に接し、\(2\)点\((2, 3), (-1, 12)\)を通る2次関数
  • 求めるもの:2次関数の方程式

求めたいのは、「2次関数の方程式」なわけです。じゃあ、「2次関数の方程式」ってのはいったいなんなのか。そう疑問を持つことができれば、次に進んでいくことができます。
2次関数の方程式は\(y=ax^2+bx+c\)という形をしています。2次関数なので、\(a \neq 0\)です。\(a=0\)だと、\(x^2\)が消えてしまい、次数が\(2\)の項がなくなり、「2次」の関数ではなくなってしまうからです。
そして2次関数では、もう一つの表現方法も大切です。それが、\(y=a(x-p)^2+q\)という形。一つ目の式を平方完成し、頂点の座標が\((p, q)\)とわかるように式変形したものになります。

この二つの表し方は基本的な事柄で、2次関数を学ぶと必ずでてくること。ひらめく類のことではありません。
次は条件をみてみます。「\(x\)軸に接し」と書かれています。

つまりこれは、「頂点が\(x\)軸上にある」ということ。条件として、”頂点に関すること”が与えられていることがわかりました。

求めたい2次関数には二つの表現がありました。一般的な\(y=ax^2+bx+c\)と、頂点の座標が\((p, q)\)である\(y=a(x-p)^2+q\)です。
一方、条件を読むと、”頂点に関する情報”が与えられていました。
2次関数の二つの表現のうち、条件の”頂点に関する情報”を扱うためには、頂点の座標が\((p, q)\)である、\(y=a(x-p)^2+q\)という方が使えそうです。
「頂点が\(x\)軸上にある」ので、頂点の\(y\)座標は\(0\)です。つまり、\((p, q)\)の、\(q=0\)。
となると、\(y=a(x-p)^2+q\)の\(q\)が\(0\)であることから、求める2次関数の方程式は\(y=a(x-p)^2\)という形をしているはずだ、とわかります。
ということで、解)の一行目にあるように、「求める2次関数の方程式は、\(y=a(x-p)^2\)とおける」わけです。


少し、混み入った話になってしまいました。混み入った話になったものの、”ひらめき”が必要となる部分は、一切ないように思います。
まず「条件と求めるものを確認」する。それに、自分の知識を組み合わせて思考を進めていく。
数学のそういう側面が伝わってほしいな、と思います。
「”ひらめき”が必要ではない」と学び、実際の問題たちを通してそれを実感してから、ぼくは数学がすごく楽しくなりました。問題の解説というのは、はじめから最後まで忠実に組み立てられた”流れ”があることがわかったからです。それはもう、よくできた「ストーリー」です。
もちろんこれは数学の”問題”に限ったことではありません。数学で学ぶいかなる”定義”や”定理”においてもそう。
自分では答えまでのストーリーを組み立てることができないかもしれない。自力では結末まで進めないかもしれない。でも、そのストーリーを理解し、味わうことはできる。
そういう思いで数学を学んでいます。楽しんでいます。
数学の魅力的なストーリーたちが、どんどん語られ、味わわれていけばいいな、と願っています。
魅力的なストーリーを、その魅力を失わせることなく、伝えることができるようになりたいと思っています。

では、お読みいただきありがとうございました。

問題の解説

「条件と求めるものを確認」してみましょう。

  • 条件:\(x\)軸に接し、\(2\)点\((2, 3), (-1, 12)\)を通る2次関数
  • 求めるもの:2次関数の方程式

求める2次関数の方程式を、\(y=a(x-p)^2\)とおきます。
先ほど確認したように、条件にて、”頂点に関する情報”として「\(x\)軸に接する」と与えられており、このことから、「頂点の\(y\)座標が\(0\)となるので、\(y=a(x-p)^2\)とおける」のでした。
与えられている条件をさらにみると、「\(2\)点\((2, 3), (-1, 12)\)を通る」とあります。
例えば、関数が「点\((1, 2)\)を通る」ということからわかることは、関数の\(x\)に、点\((1, 2)\)の\(x\)座標である\(1\)を代入すると、そのときの\(y\)の値は点\((1, 2)\)の\(y\)座標である\(2\)になる、ということ。つまり、\(x\)と\(y\)のそれぞれに、点\((1, 2)\)の\(x\)座標、\(y\)座標を代入した式が成り立つ、ということです。
\(y=a(x-p)^2\)が\((2, 3)\)を通ることから、\(x=2\)と\(y=3\)を代入した式、\(3=a(2-p)^2\)が成り立ちます。
同様に、\((-1, 12)\)を通ることから、\(12=a(-1-p)^2\)が成り立ちます。
あとは、この2つの式を利用して、\(a\)と\(p\)の2つの文字の値を求めていきます。
2つの未知数\(a\)と\(p\)に対して、2つの式を導くことができました。2つの式があれば、2つの未知数\(a\)と\(p\)の値を求めることができるはずです。

\[
\left\{
\begin{array}{l}
3=a(2-p)^2 \mbox{・・・(1)}\\
12=a(-1-p)^2 \mbox{・・・(2)}
\end{array}
\right.
\]

(1)の両辺を\((2-p)^2\)で割って、

\[
3=a(2-p)^2 \Leftrightarrow \frac{3}{(2-p)^2}=a
\]

これを(2)に代入すると、

\[
\begin{eqnarray}
&~&12=a(-1-p)^2 \\
&\Leftrightarrow &12=\frac{3}{(2-p)^2}(-1-p)^2
\end{eqnarray}
\]

これを解いていきます。

\[
\begin{eqnarray}
&~ &12=\frac{3}{(2-p)^2}(-1-p)^2 \\
&\Leftrightarrow &12(2-p)^2=3(-1-p)^2 \mbox{ (両辺を}(2-p)^2\mbox{倍した)} \\
&\Leftrightarrow &4(2-p)^2=(-1-p)^2 \mbox{ (両辺}\div 3 \mbox{)}\\
&\Leftrightarrow &4p^2-16p+16=p^2+2p+1 \\
&\Leftrightarrow &3p^2-18p+15=0 \\
&\Leftrightarrow &p^2-6p+5=0 \mbox{ (両辺}\div 3\mbox{)}\\
&\Leftrightarrow &(p-1)(p-5)=0\\
&\Leftrightarrow &p=1, 5
\end{eqnarray}
\]

\(p=1\)のとき、(1)に代入すると、
\(3=a(2-1)^2 \Leftrightarrow a=3\)。このとき、求める2次関数は\(y=3(x-1)^2\)。
\(p=5\)のとき、(1)に代入すると、
\(3=a(2-5)^2 \Leftrightarrow a= \displaystyle \frac{1}{3}\)。このとき、求める2次関数は\(y=\displaystyle \frac{1}{3}(x-5)^2\)。

というわけで、答えは\(y=3(x-1)^2 , y=\displaystyle \frac{1}{3}(x-5)^2\)であることがわかりました。

“とりあえず”・”なんとなく”からの脱却 ー数学からぼくが学んだこと1ー

地図をもっている。行きたい場所がある。のに、”とりあえず”東に向かったり、”なんとなく”道をわたってみることなんて、普通はしないと思います。
でもぼくは、何年もの間、”とりあえず”や”なんとなく”に身を任せていました。
”とりあえず”式変形したり、”なんとなく”値をあてはめたり。
そう、数学の話です。


少し、2次関数の話をします。
中学のころから「関数」を学び始めます。そして、高校に進み、関数をさらにふかく考えていくことになります。その一番はじめにじっくり学んでいくのが「2次関数」です。
2次関数は、「放物線」と呼ばれます。

2次関数において、とても特徴的な点が、「頂点」です。頂点を境に、それまで増加していれば減少に転じ、減少していれば増加に転じるからです。

それゆえ、2次関数に関する問いでは、頂点がカギを握ることがよくあります。5問出題されれば、そのうち3〜4問は頂点を求めて考えていかねばならない、と言っても過言ではないくらいの頻度です。


ひとつ、次の問題を考えてみます。

関数\(y=ax^2-2x+a+2\)の値が常に正であるような\(a\)の値の範囲を求めよ。

2次関数の問題だ、と判断し、「”とりあえず”頂点を求めてみよう」と考える。
とりあえず頂点を求めたくなる気持ちはわかります。実際それでうまくいくことも多い。なにせ、5問中3,4問ほどは頂点がカギになってくるくらいですから。
”とりあえず”頂点を求めたからといって、方向を間違え、答えまでたどり着くことができないわけではありません。実際、頂点を求め、考えを進めていくこともできます。
とはいえ、2次関数が与えられているからといって「”とりあえず”頂点を求めてみよう」というのは、地図があるのに、現在地や目的地を確認せずに歩き出すようなもの。5問中3,4問それでうまくいくとはいえ、今どこにいて、到達したいのはどこなのか、の把握が不十分であれば、いつか大きく道を間違ってしまうことになる。
現在地や目的地を確認せずに目的地にたどり着いたとしたら、それはすごくラッキーです。もしかしたら、とんでもない方向に進んでしまっている可能性もあるのですから。
目的地にたどり着きたいのであれば、まずは、自分がどこにいるのか、行きたい場所はどこかを確認するのが普通です。それらが地図上のどこにあるか確認できてこそ、目的地に向かうための最初の一歩が、歩き出す方向が定まります。
ぼくは、高校3年生まで、そんな当たり前のことすらまったく意識せず、数学の問題を考えていました。
この問題を読み、「2次関数やし、頂点頂点」と、”とりあえず”頂点を求めていました。


地図において「現在地と目的地を確認する」ことは、数学において「条件と求めるものを確認する」ことと同じ、と言えます。
まずはそこから。そこから、次にどう進むかを考えていく。
「”とりあえず”頂点を求める」のではなく、上記の問題に対し「条件と求めるものを確認する」ことからはじめてみます。まずは、現在地と目的地を確認するのです。
与えられているのは、2次関数\(y=ax^2-2x+a+2\)。求めるものは、この関数の値が常に正であるような\(a\)の値。
”とりあえず”頂点を求めたくなる気をおさえ、注意深く与えられている関数を眺めると、与えられている2次関数は、\(a\)の値によってその姿をいろいろと変化させることがわかります。
\(a>0\)であれば、2次関数のグラフは下に凸になります。
\(a<0\)ならば上に凸になります。
さらには、\(a=0\)であれば、与えられた関数は2次関数ではなくなってしまいます。

パッと見は2次関数の形をしているものの、実際は\(a\)の値により2次関数ではない場合も考えられる、というわけです。
このように「条件を確認」してみると、「”とりあえず”頂点を求めてみよう」というのは、さほどいい手ではないことがわかります。だって、\(a=0\)のときには、左辺は2次関数ではなく、頂点が存在しないのですから。
\(a\)の値によって、左辺はいろいろなケースに分けられる。まずは、はじめの一歩として\(a\)の値によって場合わけをするほうが良さそうです。


地図をもとに目的地に行きたい時には、地図上での現在地と目的地、つまり、今いるところと、たどり着きたいゴールを確認する。
同じように、数学の問題を解く時には、まずは条件と求めるもの、つまり、与えられていることと、それらを利用して明らかにしたいことを確認してから、どういう一歩を踏み出せばいいか考え、判断する。
数学の問題に取り組むと、繰り返し繰り返し、「条件と求めるものを確認してから、どう進むか考え、判断する」ことになります。
今わかることをもとに、次の一手を選択することになります。
この繰り返しが、ぼくの人生に与えた影響というのは、きっと小さくはないはず。
「条件と求めるものを確認してから、どう進むか考え、判断する」ことを教えてくれ、「”とりあえず”式変形したり”なんとなく”値をあてはめたりする」というそれまでの思考に終止符を打ってくれた高校時代の恩師には、感謝してもしきれません。
恩師がぼくに大きな影響を与えてくれたように、ぼくも数学を通して、何か良い影響を与えることができればな、と願うばかりです。

では、お読みいただきありがとうございました。

問題の解説

関数\(y=ax^2-2x+a+2\)の値が常に正であるような\(a\)の値の範囲を求めよ。

「\(y=ax^2-2x+a+2\)の値が常に正」
とは、
「\(y\)が、\(ax^2-2x+a+2\)という\(x\)の式で与えられており、その値が常に正」
という意味です。

関数は、グラフでとらえることで可視化することができ、それが理解の手助けになることがよくあります。
今回も、グラフの力をかりることにしましょう。
2次関数の値が「常に正」になるとはどういうことか。「常に正」になっているときの、グラフの状況を考えていきます。

例えば、\(y=x^2-4\)という2次関数を考えてみることにします。実際にいくつか\(x\)に値をあてはめて計算してみると、\(y\)の値が負になる時と正になる時があることに気づきます。
\(x=1\)のとき、\(y=1^2-4=-3\)や、
\(x=0\)のとき、\(y=0-4=-4\)などは、\(y\)の値が負になる。
\(x=3\)のとき、\(y=3^2-4=5\)などは、\(y\)の値が正になる。
つまり、\(y=x^2-4\)は、常に正ではない、ということです。このことをグラフでとらえてみましょう。
\(y=x^2-4\)のグラフを描くと、以下のようになります。

グラフにおいて、\(y\)の値が負になっているのはどの部分かを考えると、\(y=x^2-4\)のグラフの、\(x\)軸よりも下にきている部分であることがわかります。

つまり、\(y=x^2-4\)という2次関数のグラフを描いてみると、\(x\)軸よりも下にくる部分がグラフ上に存在する。グラフ上の\(x\)軸よりも下にきている部分は、\(y\)の値が負の値をとっているところである。
グラフ上で、\(x\)軸よりも下にくる部分があれば、その2次関数の\(y\)の値は負になるときがある、ということ。「常に正」ではないということです。

グラフを描いて、\(x\)軸よりも下にくる部分があれば、その関数は「常に正」ではない

わけですね。
では、「常に正」となるようなグラフは、どういったものになるのか。

以下のような状況であれば、負になる部分がなく、「常に正」である、と言えることになりますよね。

\(x\)軸よりも下にくる部分がないので、\(y\)の値は負にはならない。\(y\)の値が負になることはないので、すなわち「常に正」である、ということになる。
こんなグラフの状況になる条件を考えれば、問われている「関数\(y=ax^2-2x+a+2\)の値が常に正であるような\(a\)の値の範囲」を求めることができそうです。
ただ、忘れてはいけないのは、与えられている関数は、\(a\)の値によっていくつかの場合が考えられる、ということ。
\(a=0\)であれば、与えられた関数は2次関数ではなく、\(a>0\)であれば、2次関数のグラフは下に凸になり、\(a<0\)ならば上に凸になる。
ということで、それぞれについて考えてみましょう。

(i) まずは、\(a=0\)のとき。
このとき、与えられている関数は、\(y=ax^2-2x+a+2=0x^2-2x+0+2=-2x+2\)となります。2次関数ではなくなり、1次関数に姿を変えました。1次関数は、グラフでとらえると直線です。実際にグラフを書いてみると、、、

\(x\)軸よりも下にくる部分が存在し、負の値をとることがあるので、「常に正」ではないことがわかります。\(a=0\)のときは、題意を満たしません。つまり、\(a=0\)は、関数\(y=ax^2-2x+a+2\)の値が常に正であるような\(a\)の値ではない、つまり、求める解ではないということです。

(ii) 次に、\(a<0\)のときを考えてみます。
このとき、関数\(y=ax^2-2x+a+2\)は、\(x^2\)の係数が\(0\)より小さいことから、上に凸のグラフを描く2次関数となります。上に凸の2次関数は、どんな場合であれグラフ上で\(x\)軸よりも下にくる部分が存在するので、やはり題意を満たしません。

これまた\(a<0\)は、関数\(y=ax^2-2x+a+2\)の値が常に正であるような\(a\)の値の範囲ではない、ということになります。

(iii) 最後は、\(a>0\)のとき。
このとき、関数\(y=ax^2-2x+a+2\)は、\(x^2\)の係数が\(0\)より大きいことから、下に凸のグラフを描く2次関数となります。下に凸であるので、条件が整えば、グラフ上で\(x\)軸よりも下にくる部分が存在しないとき、つまり、「常に正」となるときがあることが、図の①をみるとわかります。

もちろんいつでも「常に正」であるわけではなく、②のようなときは、\(x\)軸よりも下にくる部分が存在し、負の値をとることになります。

以上のことから、グラフが①のようになるような条件を考えればいい、ということになります。このようになるのは、「頂点の\(y\)座標が0より大きいとき」と考え、頂点を求めて計算してもいいのですが、ちょっと計算がややこしくなりそうなので、別の手で攻めようと思います。
それは、「判別式」です。判別式は、2次関数が\(x\)軸と共有点を持つときと持たないときを判別することができる公式です。

  • \(D=b^2-4ac<0\)のとき、共有点を持たない
  • \(D=b^2-4ac=0\)のとき、1点で接する
  • \(D=b^2-4ac>0\)のとき、2点で交わる

ということが言えます。

グラフが①のようになるのは、2次関数が\(x\)軸と共有点をもたないとき。なので、
\(D=b^2-4ac<0\)
となるときを考えます。まず\(D\)の値を計算してみましょう。
\begin{eqnarray}
D &=& b^2-4ac \\
&=& (-2)^2-4a(a+2) \\
&=& -4(a^2+2a-1)
\end{eqnarray}
この値が、\(0\)より小さくなるのは、

\begin{eqnarray}
&~&-4(a^2+2a-1)<0 \\\ & \Leftrightarrow & a^2+2a-1>0 \\
& \Leftrightarrow & a<-1-\sqrt{2}~,~~-1+\sqrt{2}<a
\end{eqnarray}

今、\(a>0\)のときを考えているので、常に正となるような\(a\)の値の範囲は、
\[-1+\sqrt{2}<a\]
となります。
以上、(i)、(ii)、(iii)より、関数\(y=ax^2-2x+a+2\)の値が常に正であるような\(a\)の値の範囲は\(-1+\sqrt{2}<a\)です。

レゴと数学

ぼくはレゴが好きだ。
もうすっかり大人になった今でも、あのブロックたちを見ると心が躍り、何かを組み立てたくなる。

レゴで遊ぶ

今でこそレゴブロックの山を見たら心躍るが、はじめは違ったに違いない。
レゴを見ても、どう使えば良いのか、どう遊べば良いのかわからない。何がどうなってどうなっていくのかわからない。
たいていは買ってきたレゴブロックを、中に入っている説明書通りに組み立てる。説明書にそって、レゴの山から必要なブロックを選ぶ。そして組み立てる。
手順を間違えない限り、車なら車が、お城ならお城が出来上がる。
その過程で、いろんなことを学んでいく。
パーツの特性なり、典型的な”組み立て方”なり。

自分で何かつくりたくなる

そうして遊び、学んでいくうちに、説明書にそって創るだけではもの足りず、自分で何かをつくりたくなる。飛行機ないし、ロボットないし。
自分のイメージした物に近づけるために、レゴの山からパーツを探していく。使えるのは、山の中にあるパーツのみ。それらを総動員して組み立て、ときには壊しながらつくっていく。
全体を一気に組み立てのが難しければ、飛行機の羽やコックピット、エンジンを別々につくっていく。部分ごとに。部分どうしを組み立てると、全体ができてくるように。
組み立て方はなんだっていい。
そこで必要になるのは、説明書をみながら組み立てたときの”経験”ということになる。
パーツの特性ないし、”組み立て方”ないし。

数学もレゴと似ている、部分がある。

数学で遊ぶ

今でこそ数学を見たら心躍るが、はじめは違ったに違いない。
数学の定理を見ても、どう使えば良いのか、数学の問題を見ても、どう考えていけば良いのかわからない。何がどうなってどうなっていくのかわからない。
たいていは提示された問題を、その問題の解説を聞き、必死に理解する。解説にそって、定理から必要なものを選ぶ。そして論理の組み立てをなぞる。
理解することができさえすれば、問題の結論に至る。
その過程で、いろんなことを学んでいく。
定理の特性・使い方なり、条件の見方・典型的な論理の”組み立て方”、流れなり。

自力で解きたくなる

そうして遊び、学んでいくうちに、解説にそって理解するだけではもの足りず、自力で解きたくなる。関数の問題ないし、幾何の問題ないし。
自力で問題を解き進めるために、条件を眺め、使える定理をさぐる。使えるのは、問題文中にある条件と、定理のみ。それらを総動員して組み立て、ときには壊しながらつくっていく。
全体を一気に組み立てるのが難しければ、別々につくっていく。部分ごとに。部分どうしを組み立てると、全体ができてくるように。
組み立て方はなんだっていい。
そこで必要になるのは、解説をみながら理解したときの”経験”ということになる。
定理の特性・使い方ないし、条件の見方・論理の”組み立て方”ないし。

もちろんレゴと数学は大きく違う。
レゴは嫌われていないし、難しくない。

おわりに

共通点はけっこうあると思う。もしかしたら、だからぼくは両方好きなのかもしれない。
結論めいたものはなにもないけど、このへんで。
では、お読みいただきありがとうございました。

20130204201928